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Abstract. We first generalize the Fulton–Gouterman transformation to a multi-band and
exponential form. While the exponential form admits the consideration of multiparticle systems,
which will be done in future papers, here we treat the multi-band form in its application to
an archetypical electron–phonon Hamiltonian, which contains the Fröhlich one as a particular
limiting case. Several generalizations will be outlined.

1. Introduction

Unitary transformations are an efficient and well known means to bring a physical problem
into a somewhat easier form, which often enlightens new insights into the problem
considered. Perhaps the most famous unitary transformation is that of Fröhlich in the
theory of superconductivity. But many others have been used in the past decades. A
transformation of particular fascination in electron–phonon and exciton–phonon problems
is that of Leeet al (LLPT) [1]. Its attraction lies in the fact that it diagonalizes Hamiltonians
of Fröhlich type with regard to the electronic subspace. The original LLPT is a one-electron
transformation and formulated in the first quantized form. It was devised for translationally
invariant systems and owes its diagonalizing property to the invariance of a generalized
momentum operator. If the LLPT is applied to more general forms of electron–phonon
Hamiltonians it loses its diagonalization property, as will be seen in a forthcoming paper.

A transformation of similar qualities as the LLPT is that of Fulton and Gouterman (FGT)
[2] and its generalization given by one of us [3]. Also in this transformation electronic
diagonalization is achieved for electron–phonon or exciton–phonon systems provided they
are governed by an Abelian symmetry group (or subgroup), and that the electronic base
establishes a regular representation of the group (or subgroup). The main virtue of the FGT
lies on the one hand in the fact that the Schrödinger-like equations (FG equations) in the
phononic subspace, to which the dynamics is reduced after the FGT has been performed,
display favourable topological features. Specifically, they convince in a lucid manner the
basic antagonistic tendencies inherent in the dynamics of the coupled systems. The FGT
has been applied in the field of quantum diffusion [4] as well as in excitonic problems
[5–9]. For example, it has been a guide to find new types of exciton–phonon states of high
energy (‘exotic states’) which are of squeezed nature in the phonon subspace and in which
the exciton is liberated to free motion, again in contrast to the conventional selftrapping
in the low-energy states [7]. This provides a semi-quantitative description of the retarded
luminescence phenomenon [10, 11] and also has an impact on energy transport problems.
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On the other hand the generalized Fulton–Gouterman transformation (GFGT) has the virtue
that in translationally invariant systems it displays its diagonalizing quality for electron–
phonon Hamiltonians of more general forms than that of the Fröhlich type, provided the
electronic Hilbert space is restricted to a single band (‘regular base’ of the Abelian group).

The main purpose of the present study is to analyse the implications of an FGT-type
transformation, if a multi-band electronic Hilbert space is chosen. If this base is taken
in such a manner that it diagonalizes the pure electronic part of the Hamiltonian, it is of
particular interest to discuss the remaining band–band transition terms initiated after the
multi-band FGT (GFGT) has been performed.

This paper is organized as follows. In the second section we introduce the multi-band
generalization of the FGT and present the explicit transformation behaviour of the basic
operators and wavefunctions. In the third section we apply the GFGT to the most general
Hamiltonian that satisfies Abelian symmetry. In section 4 we give the GFGT operator and
the respective transformed expressions for the particular case of translational invariance. We
also present the exponentional form of the GFGT, which will be the starting point for multi-
particle calculations in future papers. In section 5 an archetypical translationally invariant
electron–phonon Hamiltonian is presented which contains the Fröhlich Hamiltonian as a
particular limiting case. The GFGT is applied and the transformed expressions are given
explicitly. In section 6 we present the phonon equations due to the transformed Hamiltonian
of section 5, which are called the Fulton–Gouterman equations (FGE). Also a perturbation
theory of the considered FGE is presented. In section 7 we give an illustrative presentation
of the topological meaning of the FGE by means of a simple translationally invariant system.
Finally, in section 8 we collect the results and the perspectives of the present work.

2. Generalized Fulton–Gouterman transformation (GFGT)

The original transformation of Fulton and Gouterman has been devised for two-states
electron–phonon systems of inversion symmetry [2]. Later, one of us [3] generalized this
transformation to systems of Abelian symmetry. The very essence of the GFGT is to exploit
the symmetry of a system as far as possible. This transformation has proven very effective
in exciton–phonon problems and others [4–11]. In particular it has given new insight to
the coupled dynamics of the two subsystems (‘squeezed’ and ‘anti-squeezed’ states, etc).
We will present here merely the essential ingredients and the generalization to an electronic
multi-band form to establish the notation. For further details we refer to the original work
of [3].

In a system of Abelian symmetry the group elementsRr (r = 0, . . . , N) commute,
RrRs = RsRr , whence the irreducible representations0 are one-dimensional and their
number equals the number of group elementsN + 1: 0 = 0, 1, . . . , N . The characters
are denoted asχ(0, r), where |χ(0, r)| = 1, and the identity elementE is taken to be
E = R0, i.e. χ(0, 0) = 1. We further note(Rr)−1 = (Rr)† andχ∗(0,Rr) ≡ χ∗(0, r) =
χ(0, (Rr)

−1).
The appropriate electronic complete orthonormal base (CONB) of a system of Abelian

symmetry is most conveniently taken in the form of irreducible base sets. We introduce a
CONB in the electronic subspace{|0, λ〉} whereλ is some band index, such that

〈0, λ|0′, λ′〉 = δ0,0′ · δλ,λ′ (1)∑
0,λ

|0, λ〉〈0, λ| = I (el) (2)

I (el) representing the electronic unity operator. We further note that the unitary operator
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Rr may be written as a product,Rr = R(el)r · R(ph)r , whereR(el)r andR(ph)r refer to the two
subsystems respectively.

By definition the Abelian base vectors have the transformation properties

R(el)r |0, λ〉 = χ(0, r)|0, λ〉 (3)

and correspondingly

〈0, λ|(R(el)r )† = χ∗(0, r)〈0, λ|. (4)

From the irreducible base we may deduce a generalized ‘Wannier’ base{|r, λ〉W }, which is
also a CONB,

|r, λ〉W = 1√
N + 1

∑
0

χ(0, r)|0, λ〉 (5)

and the inversion reads

|0, λ〉 = 1√
N + 1

∑
r

χ∗(0, r)|r, λ〉W . (6)

Using definition (5) we may generate the set of Wannier functions from a single one:

|r, λ〉W = R(el)r |0, λ〉W (7)

〈r, λ|W = 〈0, λ|W(R(el)r )†. (8)

In the phonon subspace we introduce irreducible canonical coordinates{Q0,P0}, such that

R(ph)r Q0 = χ(0, r)Q0R
(ph)
r (9)

R(ph)r P0 = χ∗(0, r)P0R(ph)r . (10)

Naturally, here we could also consider several irreducible branches (necessitating a branch
indexµ), but for simplicity of notation we refrain from doing so. Likewise we introduce
corresponding canonical variables of ‘Wannier’ type

Qr = 1√
N + 1

∑
0

χ(0, r)Q0 (11)

Pr = 1√
N + 1

∑
0

(χ(0, r))∗P0. (12)

This establishes the background for introducing the GFGT. It is administered by the operators

UGFG= 1√
N + 1

∑
r,0
λ

χ∗(0, r)|r, λ〉W 〈0, λ|R(ph)r (13)

U
†
GFG=

1√
N + 1

∑
r,0
λ

χ(0, r)|0, λ〉〈r, λ|W(R(ph)r )†. (14)

We note that the GFG-operators are written in a ‘mixed’ projective form, referring both to
the irreducible base|0, λ〉 and to the Wannier base|r, λ〉W . This presentation most directly
leads to diagonalization with respect to the electronic subsystem. For later discussion it is
advantageous, however, to writeUGFG also in a pure Wannier form. This is achieved if
equation (6) is employed. Then

UGFG=
∑
r,λ

|r, λ〉W 〈r, λ|WR(ph)r (15)

U
†
GFG=

∑
r,λ

|r, λ〉W 〈r, λ|W(R(ph)r )†. (16)
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The basic transformation properties are given by

U
†
GFG|r, λ〉W =

1√
N + 1

∑
0

χ(0, r)|0, λ〉(R(ph)r )† = |r, λ〉W(R(ph)r )† (17)

〈r, λ|WUGFG= 1√
N + 1

∑
0

χ∗(0, r)〈0, λ|R(ph)r = 〈r, λ|WR(ph)r (18)

TGFG : |r, λ〉W 〈r ′, λ′|W ≡ U †GFG|r, λ〉W 〈r ′, λ′|WUGFG= |r, λ〉W 〈r ′, λ′|W(R(ph)r )†R
(ph)

r ′ (19)

TGFG : Q0 =
∑
r,λ

χ∗(0, r)Q0|r, λ〉W 〈r, λ|W (20)

TGFG : F (ph)(Q, P ) =
∑
r,λ

|r, λ〉W 〈r, λ|W(R(ph)r )†F (ph)(Q, P )R(ph)r (21)

where the notation

TGFG : A = (UGFG)
†AUGFG (22)

has been used.

3. Application to a general electron–phonon Hamiltonian

We now turn to the application of the GFGT to an electron–phonon Hamiltonian. The most
general form satisfying the assumed Abelian symmetry

RrH = HRr (23)

may be written as

H =
∑
r

RrH0(Rr)
† Rr = R(el)r R(ph)r (24)

where

H0 =
∑
s
λ,λ′

|0, λ〉W 〈s, λ′|Wh(ph)(s, λλ′) (25)

=
∑
s
λ,λ′

|0, λ〉W 〈0, λ′|W(R(el)s )†h(ph)(s, λλ′) (26)

and h(ph)(s, λλ′) is an arbitrary Hamiltonian form in the phonon subspace. Onto this
Hamiltonian we apply the GFGT,

TGFG : H ≡ U †GFGHUGFG (27)

=
∑
r
λ,λ′

|r, λ〉W 〈r, λ′|W(R(el)s )†h(ph)(s, λλ′)R(ph)s (28)

=
∑
0
λ,λ′

∑
s

|0, λ〉〈0, λ′|h(ph)(s, λλ′)χ∗(0, s)R(ph)s (Q, P ) (29)

where the orthonormality relations for the Abelian charactersχ(0, r)

1

N + 1

∑
0

(χ(0, r))∗χ(0, r ′) = δrr ′ (30)

1

N + 1

∑
r

(χ(0, r))∗χ(0′, r) = δ00′ (31)
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have been employed. Expression (29) is seen to be diagonal in the electronic projectors
with respect to the irreducible representation, whence the transformed eigenfunctions may
be written in the form

TGFG : 9̃(0) ≡ 9̃(G) =
∑
λ

|0λ〉8(0λ)(Q) (32)

which, inserted in the Schrödinger equation pertaining to Hamiltonian (29), leads to the
generalized Fulton–Gouterman equations∑

s
λ′

χ∗(0, s)h(ph)(s, λλ′)R(ph)s (Q, P )8(0λ′)(Q) = E(0)8(0λ)(Q) (33)

which strictly refers to the phonon subspace{Q} only. In particular, if band-coupling
terms(λ′ 6= λ) are absent or discarded, one ends up with a single Schrödinger equation in
the phonon subspace characterized by0λ, i.e. by the irreducible representation0 and the
electronic bandλ. Thus, ifh(ph)(s, λλ′) = 0 for λ 6= λ′, we have∑

s

χ∗(0, s)h(ph)(s, λλ)R(ph)s (Q, P )8(0λ)(Q) = E(0)8(0λ)(Q). (34)

We add a final supplementary note. If a pure electronic Hamiltonian is considered, i.e. a
special form of (25), in whichh(ph) is taken as a constant,

H0 =
∑
s
λ,λ′

|0, λ〉W 〈s, λ′|WCs,λλ′ (35)

we find

Hel =
∑
r

RrH0R
†
r

=
∑
r,s
λ,λ′

Cs,λλ′ |r, λ〉W 〈r, λ′|W(R(el)s )† (36)

=
∑
s,0
λ,λ′

|0, λ〉〈0, λ′|Cs,λλ′(χ(0, s))∗ (37)

the GFGT of which reads

TGFG : Hel =
∑
s,0
λ,λ′

|0, λ〉〈0, λ′|Cs,λλ′(χ(0, s))∗R(ph)s (Q, P ). (38)

This shows that, via the operatorsR(ph)s (Q, P ), the purely electronic nature is lost in the
transformed picture. This has been illustrated already in equation (19), where the electronic
projectors have acquired a vibrational factor after this transformation. If the electronic
base{|0λ〉} is chosen as eigen-base of the electronic part of the Hamiltonian, we have
Cs,λλ′ = Cs,λδλλ′ , and then

Hel =
∑
0λ

E(el)(0λ)|0λ〉〈0λ| (39)

E(el) =
∑
s

Cs,λ(χ(0, s))
∗. (40)

Inverting the latter expression by means of the orthogonality relations of the characters (30)
leads to

Cs,λ = 1

N + 1

∑
0

χ(0, s)E(el)(0λ) (41)
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and inserting this into (38) we find

TGFG : Hel =
∑
0λ

|0, λ〉〈0, λ| 1

N + 1

∑
0′,s

(χ(0, s))∗χ(0′, s)E(el)(0′, λ)R(ph)s (Q, P ). (42)

4. GFGT in translational symmetry

One of the simplest Abelian groups is the translational group, the most famous cyclic
group. There the three-dimensional group elementsRm may be written as a product of
three one-dimensional translation elements:

Rm = Rm1Rm2Rm3 mi = a
(

0,±1, . . . ,±N
2

)
(43)

wherea is the lattice vector and the indexi represents the three spatial coordinatesx, y, z.
In this case we may turn to the Bloch notation of irreducible representations,

q = (q1, q2, q3) qi = 2π

a(N + 1)
γi γi = 0,±1, . . . ,±N

2
(44)

and the characters are given by

χ(q,m) = e−iqm. (45)

The irreducible base functions are Bloch functions

|0, λ〉 ≡ |qλ〉 = eiqru(qλ; r) (46)

whereu(qλ; r) is periodic:

R(el)m : u(qλ; r) ≡ u(qλ; r −m) ≡ u(qλ; r). (47)

Given equation (45), we have

R(el)m |qλ〉 = e−iqm|qλ〉. (48)

Applied to an arbitrary spatial function the translational elements have the property

R(el)m f (r) = f (r −m)R(el)m . (49)

The electronic operators may therefore be written in the form

R(el)m = exp

[
i

h̄
mp

]
(50)

wherep = ih̄∇ is the electron momentum operator.
Now we introduce the Wannier companion|mλ〉W to the Bloch base|qλ〉 by means of

the inter-relations

|mλ〉W = 1

(N + 1)3/2
∑
q

e−iqm|qλ〉 (51)

|qλ〉 = 1

(N + 1)3/2
∑
m

e+iqm|mλ〉W . (52)

Both the Wannier and the Bloch bases are orthonormal bases:∑
qλ

|qλ〉〈qλ| = I (el) (53)∑
mλ

|mλ〉〈mλ| = I (el) (54)
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whereI (el) is the unity operator in the electronic subspace.
In the phonon subspace we have, in analogy to (51), Wannier partnersQm andPm to

the phononic Bloch coordinatesQq andPq:

Qm = 1

(N + 1)3/2
∑
q

e−iqmQq (55)

Pm = 1

(N + 1)3/2
∑
q

e+iqmPq. (56)

The inversion is given by

Qq = 1

(N + 1)3/2
∑
m

e+iqmQm (57)

Pq = 1

(N + 1)3/2
∑
m

e−iqmPm. (58)

The phononic part of the translational operator applied to the phonon operators yields

R(ph)m Qn = Qn+mR(ph)m (59)

R(ph)m Pn = Pn+mR(ph)m (60)

R(ph)m Qq = e−iqmQqR
(ph)
m (61)

R(ph)m Pq = eiqmPqR
(ph)
m . (62)

Often it is advantageous to use the creation and annihilation operatorsb†q andbq given by

bq =
√
�(q)

2h̄
Q†q + i

√
1

2h̄�(q)
Pq (63)

and we may therefore express the phononic operatorsQq andPq as follows:

Qq =
√

h̄

2�(q)
(b−q + b†q) = Q†−q (64)

Pq = 1

i

√
h̄�(q)

2
(bq − b†−q) = P †−q. (65)

The translation of the annihilation operators amounts to

R(ph)m bq = eiqmbqR
(ph)
m . (66)

Since for cyclic symmetryR(ph)m may now also be written in an exponential form,

R(ph)m
def= exp

[
1

2h̄
m
∑
q

q(QqPq + PqQq)

]
def= exp

[
− im

∑
q

qb†qbq

]
(67)

the GFG-operator (13) assumes a particularly simple form. For simplicity of notation we
show this for a single ‘regular’ branch{Pq,Qq} of phonon coordinates, i.e. one which
constitutes a ‘regular’ representation. A generalization to more than a single coordinate
branch is straightforward. Then we define

UGFG= exp

[
1

2h̄

∑
mλ,q

mq|mλ〉W 〈mλ|W(QqPq + PqQq)

]
(68)

= exp

[
− i

∑
mλ,q

mq|mλ〉W 〈mλ|Wb†qbq
]
. (69)
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This expression will be the key to establishing the multiparticle form of the GFGT.
For application purposes we supplement the cyclic realization of the GFG-operator in

the mixed projective form (13), reading

UGFG= 1

(N + 1)3/2
∑
mλ,q

eiqm|mλ〉W 〈qλ|R(ph)m (70)

and in the pure Bloch projection, reading

UGFG= 1

(N + 1)3
∑
mλ,qq′

ei(q−q′)m|q′λ〉〈qλ|R(ph)m (71)

as well as in the pure Wannier projection, reading

UGFG=
∑
mλ

|mλ〉W 〈mλ|WR(ph)m (72)

whereR(ph)m is defined in (67).
The basic transformation formulae are given by expressions (17)–(21), rewritten in the

appropriate cyclic form:

U
†
GFG|mλ〉W =

1

(N + 1)3/2
∑
q

e−iqm|qλ〉(R(ph)m )† = |mλ〉W(R(ph)m )† (73)

U
†
GFG|qλ〉 =

1

(N + 1)3/2
∑
m

eiqm|mλ〉W(R(ph)m )† (74)

TGFG : Qq =
∑
mλ

eiqmQq|mλ〉W 〈mλ|W (75)

TGFG : Pq =
∑
mλ

e−iqmPq|mλ〉W 〈mλ|W (76)

TGFG : Qm = 1

(N + 1)3
∑
nλ,qq′

ei(q−q′)mQm−n|q′λ〉〈qλ| (77)

TGFG : Pm = 1

(N + 1)3
∑
nλ,qq′

ei(q−q′)mPm−n|q′λ〉〈qλ|. (78)

5. Application to an archetypical translationally invariant electron–phonon
Hamiltonian

In order to display all possible generalizations of the GFG we treat an archetypical electron–
phonon Hamiltonian of translationally invariant nature. The Fröhlich Hamiltonian [13, 14]
is contained as a particular limiting case of the given Hamiltonian which consists of four
parts:

H = Hel +Hep +Hph +Hanh. (79)

The electronic and the phonon–electron parts are generated by the transfer termTel and a
potential induced by the interatomic movement of the cores in directione:

Hel +Hep = Tel +
∑
m

V (r − (m+ eQm)) (80)

= Tel +
∑
m

V (r −m)+
∑
m

Qme∇V (r −m)+O(Q2). (81)

Often it is advantageous to use the Fourier transformed potentialV (q,G). Since the spatial
coordinater is continuous, we need an infinite number ofk-vectors in the Fourier space to



Multiband Fulton–Gouterman transformation 2819

describe the system adequately.q defines the allowedk-vectors of the first Brillouin zone
while G is a reciprocal lattice vector

V (q,G) = 1

(N + 1)3/2

∫
r

d3r

a3
e−i(q+G)rV (r) (82)

V (r) = 1

(N + 1)3/2
∑
q,G

ei(q+G)rV (q,G) (83)

whereq is given in (44) andG is defined by

G = (G1,G2,G3) Gi = 2π
gi

a
gi = 0,±1, . . . ,±∞. (84)

The pure electronic Hamiltonian reads

Hel = Tel +
∑
m

V (r −m) (85)

and the electron–phonon Hamiltonian is given by means of (82):

Hep = i
∑
q,G

e(q +G)ei(q+G)rV (q,G)Q−q +O(Q2). (86)

Henceforth, we will neglect second- and higher-order terms in the phonon coordinates.
Equation (86) may be divided into two parts:

Hep = H(N)
ep +H(U)

ep (87)

whereH(N)
ep represents theNormal processes,

H(N)
ep = i

∑
q

eqeiqrV (q,G = 0)Q−q (88)

while H(U)
ep displays theUmklappprocesses,

H(U)
ep = i

∑
q,G 6=0

e(q +G)ei(q+G)rV (q,G)Q−q. (89)

The phonon Hamiltonian is formed by the harmonic part

Hph = 1
2

∑
q

[P †qPq +�(q)2Q†qQq] = h̄
∑
q

�(q)(b†qbq + 1
2) (90)

and the lowest possible anharmonic one

Hanh =
∑

q,q′,q′′,G

K
(G)
qq′q′′QqQq′Qq′′δ(q + q′ + q′′ −G). (91)

We now choose the eigen-base ofHel as an electronic base for our further calculations,

Hel|qλ〉 = E(el)(q, λ)|qλ〉. (92)

The transformed electronic Hamiltonian is given by (42),

TGFG : Hel =
∑
qλ

|q, λ〉〈q, λ|hel(q, λ) (93)

where

hel(q, λ) = 1

(N + 1)3
∑
q′,m

ei(q−q′)mE(el)(q′, λ) R(ph)m (Q, P ) (94)

= E(el)
(
q −

∑
q′
q′b′†q b

′
q, λ

)
(95)
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and whereE(el)(q, λ) is introduced in equation (92). By means of the GFG given in (72)
we calculate the transformed forms of the remaining parts of the considered Hamiltonian
as follows:

TGFG : H(N)
ep =

∑
q,λλ′
|q, λ〉〈q, λ′|h(N)ep (q, λλ

′) (96)

where

h(N)ep (q, λλ
′) =

∑
n,q′

ieq′V (q′,G = 0)eiqn〈0λ|Weiq′r|nλ′〉WQ−q′R(ph)n (Q, P ) (97)

and

TGFG : H(U)
ep =

∑
q,λλ′
|q, λ〉〈q, λ′|h(U)ep (q, λλ

′) (98)

where

h(U)ep (q, λλ
′) =

∑
n,q′

∑
G 6=0

ie(q′ +G)V (q′,G)eiqn〈0λ|Wei(q′+G)r|nλ′〉WQ−q′R(ph)n (Q, P )

(99)

and trivially

TGFG : Hph = Hph (100)

TGFG : Hanh = Hanh. (101)

Thus we are able to write the transformed Hamiltonian in the lucid form

TGFG : H =
∑
q,λλ′
|q, λ〉〈q, λ′|h(q, λλ′) (102)

where

h(q, λλ′) = hel(q, λ)δλλ′ + h(N)ep (q, λλ
′)+ h(U)ep (q, λλ

′)+ (Hph +Hanh)δλλ′ . (103)

6. The Fulton–Gouterman equations (FGEs)

Since we have now translated the Hamiltonian (79) into a form which is diagonal with
respect to theq-vector of the electronic sub-base{|qλ〉}, the original Schr̈odinger equation
is separated into a sequence of phononic equations, each of which, respectively, is related
to one of the electronicq-vectors:∑

λ′
h(q, λλ′)8(qλ′)(Q) = E(q)8(qλ)(Q) λ = 0,±1,±2, . . . . (104)

These are called the Fulton–Gouterman equations (FGEs). The FGEs are totally equivalent
to the Schr̈odinger equation in the transformed picture

(TGFG : H)9̃(q) = E(q)9̃(q) (105)

where due to the diagonal form of the transformed Hamiltonian the wavefunction9̃(q) is
given as a superposition of direct products of the electronic part|qλ〉 and the phononic part
8(qλ)(Q),

9̃(q) =
∑
λ

|qλ〉8(qλ). (106)

We still are left with a summation over the electronic band indexλ.
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At this stage it appears useful to illustrate the remaining implications within the given
set of FGEs. To this end we consider a perturbative approach, where the unperturbated
problem is given by

h(q, λλ)ϕ
(qλ)
j = ε(qλ)j ϕ

(qλ)
j (107)

j denoting the quantum number. We define the matrix elements

W
(λλ′)
jj ′ ≡

〈
ϕ
(qλ)
j

∣∣∣∣ ∑
λ′′ 6=λ

h(q, λλ′′)
∣∣∣∣ϕ(qλ′)j ′

〉
(108)

involving the perturbation operator∑
λ′′ 6=λ

h(q, λλ′′). (109)

We thus receive the series for the energy

E
(qλ)
j = ε(qλ)j +Wλλ

jj +
∑
λ′ 6=λ
j

|Wλλ′
jj ′ |2

ε
(qλ)
j − ε(qλ′)j ′

+O(|W |3) (110)

and for the phononic wavefunction

8
(qλ)
j (Q) = ϕ(qλ)j +

∑
λ′ 6=λ
j

Wλλ′
jj ′

ε
(qλ′)
j ′ − ε(qλ)j

ϕ
(qλ′)
j ′ +O(|W |2). (111)

In general these series tend to converge quickly, since the energiesε
(qλ)
j in the denominators

of the last terms in (110) and (111) are owing to different bands with the sameq-vector,
which in most cases differ sufficiently. In view of that even the zeroth order wavefunctions
will in general prove to be a rather good approximation.

7. Antagonistic physical tendencies in the FGEs

In this section we want to illustrate the topological aspects inherent in the FGEs. The
antagonistic tendencies of the coupling and the electronic term in each FGE is easily seen in
a simple translationally invariant model. For the sake of lucidity we limit our consideration
to a one-dimensional one-band Hamiltonian of the Fröhlich type,

H = Hph +Hel +Hep (112)

Hph = 1
2

∑
q

[P+q Pq +�2(Q)Q+q Qq ] (113)

Hel = −
∑
m

T [|m〉〈m+ 1| + |m+ 1〉〈m|] (114)

Hep =
∑
m,q

VqQ−qe−iqm|m〉〈m|. (115)

The respective FG-operator has the form

UFG = 1

N1/2

∑
m,q

e−iqm|m〉〈q|R(ph)m (Q, P ) (116)

with

R(ph)m (Q, P ) = exp

[
− im

∑
q

qb+q bq

]
(117)
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as in (67). The transformed Hamiltonian then reads

TFG : H =
∑
q

|q〉〈q|h(q) (118)

with

h(q) = Hph − T (eiqR
(ph)

1 (Q, P )+ e−iqR
(ph)

−1 (Q, P ))+
∑
q ′
Vq ′Q−q ′ . (119)

The FGE

h(q)8(q)(Q) = E(q)8(q)(Q) (120)

constitutes an eigenvalue problem in the oscillatory subspace and is totally equivalent to
the original full Schr̈odinger equation. In (119) the last term, i.e. the transformed coupling
term, tends to provoke a displacement of the oscillatory equilibrium positions and exerts
a polaronic (selftrapping) effect onto the electrons. On the other hand, the transformed
transfer term in (119) tends to delocate the electron due to the phononic translational operator
R
(ph)

1 (Q, P ).
The combination of these antagonistic tendencies may become effective in a different

manner for different energy regimes. In any case the most straightforward way to
establish trial functions for the solution of equation (120) is by means of phononic unitary
transformations,

8(q)(Q) = U(Q,P )8(q,0)(Q) (121)

whereU+ = U−1 and where8(q,0)(Q) may be taken as an eigenfunction of the undisturbed
phonon HamiltonianHph. The parameters inherent in the chosen unitary operatorU(Q,P )

may be fixed by minimizing the energy of the ground state, or by applying the Peierls–
Bogoliubov inequality.

In previous years several approaches to establishing solutions of single-band FGEs have
been performed [5–11]. In simpler systems, like the dimer or trimer systems [5–7] and in the
E×e-Jahn-Teller problem [12] it turns out that there are two fundamental types of phononic
wavefunctions. For low energies the mirror-image replica of the displaced oscillator function
provokes an effective broadening of the wavefunction and thus is tantamount to a ‘softening’
of the vibrations. By contrast, at higher energies, other types of states also make their
appearance, which amount to squeezed oscillatory undisplaced functions, i.e. the vibrations
are getting ‘harder’. For more details we refer to the originals. For extended electron–
phonon systems the features described are present in a modified way [8, 9].

8. Results and perspectives

The main aims of the present work are, on the one hand, to formulate of the multi-band
form of the generalized Fulton–Gouterman transformation (GFGT), and on the other hand,
to establish an exponential form of the transformation operator.

In the past the single-band FGT has proven useful for the solution of many archetypical
theoretical models. However, for extended electron–phonon or exciton–phonon systems
a multi-band form is highly desirable. Equally desirable is an exponential form of the
transformation operator, since this establishes the possibility to extend the formalism to
more than a single electron (exciton). Both are achieved in the present paper. The extension
to multi-electron solutions will be considered in a future work.

Another perspective of the multi-band form of the GFGT is the option to compare
the virtues of this transformation with those of the famous Lee–Low–Pines transformation
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(LLPT) [1]. In a forthcoming paper it will be shown that only in the case of linear electron–
phonon coupling, and only if Umklapp-terms [15, 16] are neglected, the LLPT displays
advantages over the GFGT, whereas for Umklapp processes as well as for a more general
electron–phonon coupling the GFGT turns out to be preferable.

As regards the multi-particle formulation, one is confronted with the difficulty that the
second-quantized version of the LLP operator is no longer unitary, whereas there is no such
problem in the GFG case. Although in the multi-particle case electronic diagonalization is
no longer achieved, the application of the GFGT seems to have a physical perspective for
the recent revival of the bi-polaron problem in the context of high-TC superconductivity
[17], as well as for the polaron charge density waves [18–20].

References

[1] Lee T D, Low F E and Pines D 1953Phys. Rev.B 90 297
[2] Fulton R L and Gouterman M 1961J. Chem. Phys.35 1059
[3] Wagner M 1984J. Phys. A: Math. Gen.17 2319
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